Sketsalahgrafik fungsi berikut ini. A. y = 2x² + 9x B. y = 8x² - 16x + 6 Jawaban Pendahuluan. karakteristik grafik berdasarkan nilai determinan. 1) Jika D > 0 grafik akan memotong sumbu x di dua titik. 2) Jika D = 0 grafik menyinggung sumbu x. 3) Jika D < 0 grafik tidak memotong sumbu x. karakteristik grafik berdasarkan nilai a,
Halo Adella, jawaban untuk soal ini pada gambar di bawah ya. Soal diatas merupakan materi fungsi kuadrat. Ingat! Bentuk umum fungsi kuadrat y = f ¥ = a¥Â² + b¥+ c Bentuk umum persamaan kuadrat a¥Â²+b¥+c= 0 , a ≠0 Keterangan ¥ = variabel a = koefisien kuadrat dari ¥Â² b = koefisien liner dari ¥ c = konstanta Cara membuat grafik persamaan kuadrat adalah dengan mencari dua koordinat titik 1. Memotong sumbu ¥ Maka nilai y = 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai ¥. Diperoleh koordinat yang memotong sumbu ¥. 2. Memotong sumbu y Maka nilai ¥= 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai y. Diperoleh koordinat yang memotong sumbu y. 3. Menentukan sumbu simetri xp = – b/2a 4. Menentukan titik puncak dengan titik koordinat 5. Gambar grafik fungsi kuadrat Diketahui, Asumsikan Persamaan y = 2¥Â² + 9¥ Ditanyakan, Grafik garis persamaan Dijawab, 1. Titik potong dengan sumbu ¥ maka y = 0 y = 2¥Â² + 9¥ 0 = 2¥Â² + 9¥ Cari faktor dari 2¥Â² + 9¥=0 2¥Â² + 9¥=0 ¥ 2¥+ 9=0 ¥ = 0 atau 2¥ + 9 = 0 ¥ = - 9/2 ¥ = -4,5 Di dapatkan nilai ¥ = 0 atau ¥ = - 9 sehingga titiknya adalah 0,0 dan -4,5,0. 2. Titik potong dengan sumbu y maka ¥ = 0 y = 2¥Â² + 9¥ y = 20² + 90 y = 0 Didapatkan titik koordinat 0, 0 3. Menentukan sumbu simetri xp = – b/2a 2¥Â² + 9¥=0 maka a = 1, b = 9 dan c = 0 xp = -b/2a = - 9/ 22 = -9/4 = -2,25 4. Menentukan titik puncak dengan titik koordinat Subtitusi xp =-2,25 ke persamaan 2¥Â² + 9¥=0 yp= f -2,25 = 2¥Â² + 9¥ = 2- 2,25 ² + 9-2,25 = 2 5,0625 - 20,25 = 10,125 - 20,25 = - 10,125 Di dapatkan titik puncak xp, yp = -2,25, - 10,125 Gambar grafik di bawah ini Terima kasih sudah bertanya, semoga bermanfaat. Terus gunakan Roboguru sebagai teman belajar kamu yaŸ˜Š
Sketsalahgrafik fungsi berikut a) 2x ^2 +9x - 17840132 dinda8679 dinda8679 24.09.2018 Matematika Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Sketsalah grafik fungsi berikut a) 2x ^2 +9x b) y= 8x^2-16x+6 1 Lihat jawaban Adakah bokeo Iklan
Sketsalah grafik fungsi berikut ini y = 2x2 + 9x, pembahasan kunci jawaban Matematika kelas 9 halaman 102 103 Latihan Sumbu Simetri dan Titik Optimum materi Semester 1. Silahkan kalian pelajari materi Bab II Persamaan dan Fungsi Kuadrat pada buku matematika kelas IX Kurikulum 2013 Revisi 2018. Pembahasan kali ini merupakan lanjutan dari tugas sebelumnya, dimana kalian telah mengerjakan soal Tentukan Sumbu Simetri Grafik Fungsi di Bawah Ini y = 2×2 – 5x secara lengkap. Latihan Sumbu Simetri dan Titik Optimum 2. Tentukan nilai optimum fungsi berikut ini. a. y = –6x2 + 24x − 19 b. y = 2/5x2 – 3x + 15 c. y = -3/4x2 + 7x − 18 Jawaban a. y = -6x^2 + 24x – 19 a = -6 b = 24 c = -19 Maka -D/4a = -b2 – 4ac / 4c -242 – 4 -6 -19 / 4-6 = -576 – 456/-24 -120/-24 = 5 b. y = 2/5×2 – 3x + 15 a = 2/5 b = -3 c = 15 Maka -D/4a = -b2 – 4ac / 4c -32 – 42/5 15 / 4. 2/5 -9-24/8/5 15/ 8/5 = = 75/8 c. y = -3/4×2 + 7x – 18 a = -3/4 b = 7 c = -18 Maka -D/4a = -b2 – 4ac / 4c -72 – 4-3/4 -18 / 4 -3/4 =-49-54 / -3 5/-3 3. Sketsalah grafik fungsi berikut ini. a. y = 2x2 + 9x b. y = 8x2 − 16x + 6 Jawaban a. y = 2×2 + 9x Sumbu x saat y 2×2 + 9x = 0 x 2x + 9 = 0 maka x = 0 atau 2x + 9 = 0 2x = -9 x = -9/2 jadi titik 0,0 ; -9/2,0 sumbu y saat x = 0 y = 2×2 + 9x y = 202 + 90 y = 0 Maka titik 0,0 Jadi titik baliknya adalah xa = -b/2a = -9/22 = -9/4 ya = -b2 – 4ac / 4a ya = -b2 – 4ac / 4a ya = – 92 – / 42 ya = – 81 – 0 / 8 ya = -81 / 8 Koordinat titik balik -9/4, -81/8 -2,25 ; -10,125 b. y = 8×2 – 16x + 6 Sumbu x ketika y = 0 8x^2 – 16x + 6 = 0 4x – 22x – 3 = 0 Maka 4x – 2 = 0 4x = 2 x = 2/4 = 1/2 dan 2x – 3 = 0 2x = – 3 x = -3/2 Maka titik 1/2,0 ; -3/2,0 sumbu y ketika x = 0 y = 8×2 – 16x + 6 y = 802 – 160 + 6 y = 6 Maka Koordinat 0,6 Jadi titik baliknya adalah xa = -b/2a = -16 / 28 = 16/16 = 1 ya = 812 – 161 + 6 ya = 8 – 16 + 6 ya = -2 Koordinat 1, -2 Jadi gambar grafiknya seperti di bawah ini 4. Diketahui suatu barisan 1, 7, 16, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan suku ke 100. 5. Diketahui suatu barisan 0, –9, –12, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan nilai minimum dari barisan tersebut. Jawaban, buka disini Diketahui Suatu Barisan 1 7 16 Suku Ke-n Dari Barisan Tersebut Dapat Dihitung dengan Rumus Demikian pembahasan kunci jawaban Matematika kelas 9 halaman 102 103 Latihan Sumbu Simetri dan Titik Optimum pada buku semester 1 kurikulum 2013 revisi 2018. Semoga bermanfaat dan berguna bagi kalian. Kerjakan juga pembahasan soal lainnya. Terimakasih, selamat belajar!
Berikutini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 102, 103. Bab 2 Persamaan dan Fungsi Kuadrat Latihan 2.3 Hal 102, 103 Nomor 1 - 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 9 di semester 1 halaman 102, 103.
MatematikaALJABAR Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0146Perhatikan grafik fungsi kuadrat fx = ax^2 + bx + c ber...Perhatikan grafik fungsi kuadrat fx = ax^2 + bx + c ber...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...0648Lukiskan grafik fungsi kuadrat fx=x^2+6x+5, untuk domai...Lukiskan grafik fungsi kuadrat fx=x^2+6x+5, untuk domai...